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Fig. 1. Given an input shape, our framework automatically produces a set of aesthetically enhanced shapes via editing the input according to some reference
shapes that are aesthetic. There are four sets of examples here. The inputs are in blue, the reference shapes are in orange, and the beautified shapes are in
yellow.

While there have been previous works that explored methods to enhance
the aesthetics of images, the automated beautification of 3D shapes has been
limited to specific shapes such as 3D face models. In this paper, we introduce
a framework to automatically enhance the aesthetics of general 3D shapes.
Our approach employs a reference-based beautification strategy. We first
performed data collection to gather the aesthetics ratings of various 3D
shapes to create a 3D shape aesthetics dataset. Then we perform reference-
based editing to edit the input shape and beautify it by making it look
more like some reference shape that is aesthetic. Specifically, we propose a
reference-guided global deformation framework to coherently deform the
input shape such that its structural proportions will be closer to those of
the reference shape. We then optionally transplant some local aesthetic
parts from the reference to the input to obtain the beautified output shapes.
Comparisons show that our reference-guided 3D deformation algorithm
outperforms existing techniques. Furthermore, quantitative and qualitative
evaluations demonstrate that the performance of our aesthetics enhancement
framework is consistent with both human perception and existing 3D shape
aesthetics assessment.
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1 INTRODUCTION
The concept of visual aesthetics is intricately intertwined with daily
human experience, and objects of aesthetic appeal have the power
to catch human gazes effortlessly. Since analyzing and enhancing
the aesthetics of existing objects is a time-consuming task that
may require specific knowledge from artists or designers, being
able to automatically beautify 3D shapes is desirable. In the past,
researchers have achieved much success in the automatic beautifica-
tion of two-dimensional images [Deng et al. 2018; Islam et al. 2017;
Leyvand et al. 2008; Yan et al. 2016]. There has also been work in the
establishment of quantifiable aesthetics metrics [Datta et al. 2006;
Deng et al. 2017; Nishiyama et al. 2011; Yang et al. 2022; Zhu et al.
2021]. However, fewer works have been proposed to enhance the
aesthetic appearance of three-dimensional models. While automatic
3D aesthetics assessment is achieved via rudimentary handcrafted
aesthetic-related features [Bergen and Ross 2013] or state-of-the-
art data-driven deep learning techniques [Chen and Lau 2022; Dev
and Lau 2022], the automated beautification of existing 3D shapes
is restricted to specific domains such as 3D faces [Arsalane et al.
2022; Liao et al. 2012; O’Toole et al. 1999], 3D layouts [Xu et al.
2019] and 3D sketch strokes [Machuca et al. 2018]. To the best of
our knowledge, no existing work automatically modifies the shape
of general 3D models with the goal of enhancing their aesthetics.
Our approach is data-driven as we collect 3D shape aesthetics data.
Hence the high-level meaning of “beautification” from our view is
that our output shapes will generally be similar to shapes that have
been identified as aesthetic by users, and each output shape will
have a higher aesthetic score compared to the corresponding input
shape.

It is meaningful to take existing ugly 3D shapes and beautify them,
since novice modellers are likely to produce unpleasing results (for
example, with poor global proportions or lacking local details) if
they were to attempt to beautify the shapes themselves. In addition,
modellers usually wish to make the shapes more aesthetic while
keeping some of the original shapes’ attributes. Therefore, in this
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Fig. 2. High-level Overview of our Framework. We build a 3D shape aes-
thetics dataset (a) and then perform reference-based editing to generate
beautification results. We first co-consider the input shape and a reference
shape that is aesthetic, and disentangle them into a joint neural template
and their own deformation flows 𝑔𝐼 and 𝑔𝑅 . The input shape is then de-
formed with its inverse deformation flow to obtain a template (b). We then
apply 𝑔𝑅 to obtain a globally adjusted shape (c). Furthermore, we may op-
tionally perform local substitution (d) via blending some aesthetic regions
of the reference shape with the globally adjusted shape. If the beautified
shape looks far from the input, we may also perform shape morphing with
the blended flow 𝑔𝑀 to produce additional results (e) and (f).

paper, we propose a framework to automatically beautify general
3D shapes. The key idea is to follow a reference-based beautification
strategy, as shown in Figure 1. More specifically, we take some 3D
models from ShapeNet [Chang et al. 2015], and collect 3D shape
aesthetics data to build a shape aesthetics sub-dataset. We then use
this sub-dataset to guide the editing of an input shape, and make it
look more like some target reference shapes in the aesthetics sub-
dataset. Since the reference shape has been judged to be aesthetic
by users, and the output shape will have global and local features
of the reference, the output is expected to be aesthetic.
Our idea is inspired by the success of image beautification with

rich well-labeled aesthetics-related datasets [Kong et al. 2016; Sun
et al. 2017]. In contrast with image aesthetics, however, the advance-
ment of 3D shape aesthetics assessment and enhancement has been
hindered by the limited availability of 3D aesthetics-related datasets.
Existing large 3D datasets [Chang et al. 2015; Mo et al. 2019] are an-
notated with low-level semantic information, such as categorization
and segmentation. Furthermore, high-level semantic labels, such as
style [Hu et al. 2017], tactile saliency [Lau et al. 2016], and other
descriptive attributes [Yumer et al. 2015], are typically collected for
only a small number of 3D models. Recently, Dev and Lau [2022]
introduced a learning-based aesthetics metric, trained on a crowd-
sourced shape aesthetics dataset, for general 3D shapes. However,
their dataset presents several limitations in both aesthetic quantity
and structural variation. For example, the dataset only includes data

for 277 “dining chairs” (which typically feature one back, one seat,
and four legs) from ShapeNet, while chairs with more varying struc-
tures are not taken into consideration. Therefore, there remains a
significant demand for well-labeled aesthetics-related 3D datasets.
To address this gap, we performed data collection to collect aesthet-
ics ratings for some 3D shapes to construct an aesthetics sub-dataset.
We gathered aesthetic ratings for 3D shapes of lamps, airplanes, cars,
chairs, and tables, and we obtained hundreds of aesthetic shapes
for each category. Figure 2a and Figure 3 show several example
aesthetic shapes with variant structures.
Given an input 3D model, our approach automatically applies

global deformations and local substitutions to enhance its aesthetics
by leveraging our aesthetics sub-dataset, as illustrated in Figure 2.
The approach is novel in that it co-considers an input 3D shape and
an aesthetic reference 3D shape, computes a joint neural template
for them, and applies sequences of forward, inverse, and blended
deformation flows. This allows us to start with an input, convert
between the template space and shape space, and generate new
output shapes that are aesthetic and resemble the input.

Our approach involves identifying suitable reference shapes in the
aesthetics sub-dataset, and editing the input shape to make it look
more like these aesthetic references while preserving its inherent
attributes. Inspired by the concept of Neural-Template[Hui et al.
2022], a topology-shape-disentangled framework designed for 3D
shape reconstruction, we use a topology-aware searching method
and introduce a reference-guided editing framework. Specifically,
Neural-Template disentangles each input shape into a topology-
aware template and a topology-preserving deformation flow which
will deform the template to reconstruct the input. To identify suitable
reference shapes, we take our aesthetics sub-dataset and search in
Neural-Template’s latent topology space to find the aesthetic shapes
whose templates are closest to the input. In other words, the found
references have similar topology structures to the input. We then
edit the input shape globally and locally to make it look more like
the reference shape.
To perform global editing, for each (input, reference) pair, we

first re-disentangle the input and reference into a joint neural tem-
plate and their own deformation flows (Figure 2). Then the input
is deformed with its inverse deformation flow to obtain an explicit
template (Figure 2b), which is then deformed by the reference’s
deformation flow. Through this process, the input is globally and
coherently deformed such that its global proportions will approxi-
mate the reference (Figure 2c). See Section 3 for more details about
the joint neural template and deformation flows.
While an ugly shape can be aesthetically enhanced globally, its

local geometries may also improve its aesthetics. Hence, we further
optionally perform local substitution and transplant some local
aesthetic regions from the reference shape to the input shape. These
local regions can be pre-labelled manually when we collect the
aesthetic shapes. Also, they can be extracted automatically with
previous works such as aesthetic maps [Chen and Lau 2022]. As the
input and reference shapes are well-aligned after global deformation,
we can achieve these transplants via Snappaste [Sharf et al. 2006]
(Figure 2d). In addition, if we wish the output shape to still resemble
the input shape even as it tries to imitate the reference shape, we
may optionally perform shape morphing (Figure 2e,f) for the edited
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shapes, via blending the deformation flows of the input and reference
shapes. See Section 3.6 for more details of this shape morphing step.

We evaluate the performance of our 3D shape aesthetics enhance-
ment framework through both user studies and state-of-the-art 3D
shape aesthetics assessment [Chen and Lau 2022]. We also compare
our beautification results with text-guided geometry manipulation
works [Gao et al. 2023; Ma et al. 2023; Michel et al. 2022] using
the prompt “beautiful” to demonstrate that current large language
models based methods cannot deal with high-level abstract descrip-
tions. In addition, we compare our reference-guided 3D deformation
method with the original Neural-Template method [Hui et al. 2022]
and other target-driven deformation techniques [Liu et al. 2021;
Yifan et al. 2020] to demonstrate that our approach yields superior
results from the perspective of reference-guided deformation.
In summary, our work makes these contributions:

• We collect 3D shape aesthetics data and build an aesthetics
sub-dataset. The sub-dataset can be used to augment existing
datasets for 3D shape analysis such as our shape beautifica-
tion problem.

• We introduce a novel reference-based editing framework to
enhance the aesthetics of existing 3D shapes. To the best of
our knowledge, our framework is the first to beautify general
3D shapes automatically. We demonstrate the effectiveness
of our framework with evaluations and comparisons.

• Our approach is novel in that it co-considers the input and
reference 3D shapes, computes a joint neural template, and ap-
plies sequences of forward, inverse, and blended deformation
flows.

2 RELATED WORK
Our work enhances the aesthetics of 3D shapes by editing them
based on aesthetic reference shapes. In this section, we discuss pre-
vious works in: aesthetics assessment and beautification, reference-
guided 3D deformation, and semantic-driven shape editing.

2.1 Aesthetics Assessment and Beautification
While aesthetics is a highly abstract and theoretical concept in the
domains of philosophy and art, researchers in computer graphics
and vision endeavour to investigate computational metrics for the
explicit evaluation of aesthetics.
For 2D images, early works [Datta et al. 2006; Li et al. 2010;

Nishiyama et al. 2011] extracted handcrafted features related to
visual and composition attributes to explicitly model the commonly
established photographic rules. More recent works [Liu et al. 2020;
Lu et al. 2015; Ren et al. 2017; Yang et al. 2022; Zhu et al. 2021]
focused on end-to-end learning of aesthetics, facilitated by the ac-
celerated progress of neural networks and the substantial expansion
of labeled image datasets. Correspondingly, with the supervision of
the established aesthetics metrics or aesthetics-revealing features,
general photo beautification is enabled through color enhancement
[Aydın et al. 2014; Deng et al. 2018; Yan et al. 2016] and composition
adjustment [Guo et al. 2018; Islam et al. 2017; Liu et al. 2010]. More-
over, geometric manipulation and conditional generative models
are also applied to the beautification of portrait photos [Diamant

et al. 2019; Leyvand et al. 2008; Li et al. 2015; Xiao et al. 2020] and
sketch drawings [Fišer et al. 2016; Shen 2021; Zitnick 2013].
In the 3D domain, early works [Pham 1999; Pham and Zhang

2003] proposed exploring the interactions between aesthetic charac-
teristics and linguistic or parametric design variables in 3D designs
via empirical investigations. Furthermore, mathematical models
were proposed for 3D aesthetic designs by extending the existing
aesthetics criteria for images to quantifiable 3D geometric features
[Bergen and Ross 2013] or formulating aesthetic curves and sur-
faces with well-defined splines [Miura and RU 2014]. More recently,
Dev and Lau [2022] built a shape aesthetics dataset and proposed
a cross-category end-to-end 3D geometry aesthetics assessment
via multi-view image-based neural networks instead of using hand-
crafted features. Based on that shape aesthetics dataset, Chen and
Lau [2022] proposed a patch-based learning framework to further
predict global aesthetics scores and local aesthetics maps for 3D
shapes simultaneously. Taking advantage of 3D geometries and
2D textures, Beauty3DFaceNet [Xiao et al. 2021] enabled 3D facial
attractiveness prediction via training deep convolutional neural net-
works. Although these works focused on 3D aesthetics assessment,
enhancing the aesthetic appeal of 3D shapes has received relatively
less attention. Existing works explored aesthetic enhancement for
specific cases, such as face models [Arsalane et al. 2022; Liao et al.
2012; O’Toole et al. 1999], 3D layouts [Xu et al. 2019], or 3D sketch
strokes [Machuca et al. 2018], with the supervision of predefined
geometric and spatial constraints related to symmetry, angles, pro-
portions, alignment, and primitives. To the best of our knowledge,
no existing work proposed automatic aesthetics enhancement for
the geometry of general 3D shapes, and our reference-based beau-
tification framework fills this gap. We employ a reference-based
strategy rather than predetermined constraints such as normaliza-
tion used in facial enhancement [O’Toole et al. 1999] because the
aesthetics of general objects has more diversity in global topology
and detailed geometry. Moreover, although no existing 3D aesthet-
ics metrics were taken into consideration in our framework, the
evaluations demonstrate that our results are consistent with both
human perception and the metrics introduced in previous works.

2.2 Reference-guided 3D Deformation
The problem of reference-guided 3D deformation involves the pro-
cess of warping a 3D source shape to a target 3D shape while main-
taining certain attributes of the source shape. It typically requires “as
rigid as possible” preservation of local identity with the aim of pose
transfer [Gao et al. 2018; Song et al. 2021, 2023], or local geometric
modification is allowed for better shape/style transfer. Our focus
will be on the latter, and we discuss the works from the perspectives
of generation-based and displacement-based approaches.

The generation-based strategies follow the idea of embedding the
source and target data into a shared latent feature space, conducting
manipulation in the latent space, and subsequently reconstructing
the output through the decoder networks. In terms of network archi-
tecture, the shape representation formats are typically voxels [Wu
et al. 2019], unordered point clouds [Segu et al. 2020; Wang et al.
2022b], or implicit representations [Chen and Zhang 2019; Deng
et al. 2021; Park et al. 2019]. While these works may be adequate for
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tasks such as style transfer or topology interpolation, we believe
that they are unsuitable for our purpose of enhancing the aesthet-
ics of existing 3D shapes. This is due to the inherent imprecision
associated with the “encoding” operation. For example, the complex
detailed geometry and the delicate surface patterns could be missing
in the decoded results.
The displacement-based strategies seek to displace the source

vertices under the consideration of satisfying the desired target. The
displacements of the vertices can be accomplished either directly
[Groueix et al. 2019; Wang et al. 2019] or indirectly through the use
of grid-based [Hanocka et al. 2018], cage-based [Yifan et al. 2020],
primitive-based [Xu et al. 2010; Yin et al. 2021], and on-surface
[Liu et al. 2021] controllers. A challenge in this context is to strike
a balance between the degrees of freedom (DoF) associated with
the parameters that need to be resolved. A high DoF [Wang et al.
2019] can lead to shape or structural anomalies, while a low DoF
[Yifan et al. 2020] may not be able to cope with flexible deformations.
Our reference-guided deformation framework is inspired by Neural-
Template [Hui et al. 2022] which decomposes each shape into its
own template and deformation flow. We recompose the input and
reference shapes into a joint neural template, and then use their
deformation flows to guide the displacements of the vertices. We
demonstrate that our framework outperforms Neural-Template [Hui
et al. 2022] and other leading works [Liu et al. 2021; Yifan et al. 2020].

2.3 Semantic-driven Shape Editing
Semantic-driven shape editing refers to the idea of editing a given
input shape according to some high-level semantic information
without any reference shapes.

Early works proposed to establish their own metrics to guide the
corresponding semantic-driven editing. Yumer et al. [2015] formu-
lated score functions for descriptive attributes such as “comfortable”
and “durable”, and then global deformation was performed with the
supervision of attribute scores. Hu et al. [2017] proposed to learn
the style-defining local elements of 3D shapes and then style-driven
modeling (e.g. transferring a Japanese chair into a Ming chair) was
achieved with the substitution of local elements. Our work does not
establish specific aesthetics metrics to guide the editing, as aesthet-
ics is a highly diverse and abstract concept when compared to these
attributes or styles. Instead, we perform aesthetics-driven editing
indirectly via reference shapes.
With the rapid development of large language models (LLMs),

recent works are interested in performing shape editing with the
guidance of texts. Most of them [Gao et al. 2023; Hong et al. 2022;
Ma et al. 2023] rely on the pretrained vision-language models such
as CLIP [Radford et al. 2021]. Typically, these works require a con-
crete description as prompt and abstract conceptions such as aes-
thetics are more difficult for them. Our experiments show that we
outperform these text-guided works in addressing the 3D shape
beautification problem.

3 3D SHAPE BEAUTIFICATION

3.1 Shape Aesthetics sub-Dataset
We construct a shape aesthetics sub-dataset by collecting aesthetics
perceptual data from users. We take shapes from ShapeNet [Chang

Fig. 3. Examples of 3D shapes in our aesthetics sub-collection.

et al. 2015] in the categories of chairs, lamps, airplanes, cars, and
tables. Some 3D shapes exhibit flaws such as missing faces or are
misclassified. Therefore, we pre-reviewed all the shapes and manu-
ally filtered the unqualified models for each category. As a result,
6600 chairs, 2100 lamps, 3900 airplanes, 3450 cars and 7600 tables
are retained. Then the remaining models in each category were
randomly divided into groups with 50 shapes for the data collection.
To carry out the user studies for the data collection, we invited

participants on our campus to rate the visual aesthetics of the 3D
models. Specifically, Each user was presented with a group of 50
models one by one. For each 3D model displayed on the screen, par-
ticipants were encouraged to manipulate the model by rotating and
scaling it to gain a comprehensive observation. Then, participants
were requested to choose the extent to which they agreed that the
3D model is aesthetic on a 5-point Likert scale: strongly disagree,
disagree, neutral, agree, and strongly agree.

While the users’ aesthetics preferences can vary significantly, we
aim to construct a dataset that captures the common opinion of
the users. To achieve this, we employed a strategy whereby each
participant only rated a group of models and each group of models
was evaluated by three participants. Subsequently, we gathered the
models that were positively rated (i.e., agree and strongly agree) by
all three participants into the aesthetics sub-collection. Conversely,
shapes that received at least two negative ratings (i.e., disagree and
strongly disagree) were designated as test shapes. After performing
this step, there are 415 chairs, 253 lamps, 352 cars, 518 airplanes and
537 tables in the aesthetics sub-collection. Figure 2a and Figure 3
show some examples of the aesthetic shapes.

3.2 Preliminary
The searching of reference shapes and the reference-guided defor-
mation algorithms are developed based on Neural-Template [Hui
et al. 2022]. We briefly overview it for a better comprehension of
the following sections.

Neural-Template is a framework proposed for the reconstruction
of high-quality 3D meshes from voxel-based or image-based inputs.
It disentangles the reconstruction problem into two steps: learn-
ing a topology-aware neural template and performing topology-
preserving 3D deformation. Specifically, Neural-Template first en-
codes the input into a topology code 𝒕 ∈ R128 and a shape code
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Fig. 4. Neural-Template’s application of shape mixing. Although the mixed
shape imitates the reference’s proportions, it is far from appealing: the back
area is incorrectly reconstructed, the legs are still thick and the bottom of
the legs cannot touch the ground stably because of distortion.

𝒔 ∈ R128. Then the topology code 𝒕 is fed into the topology formu-
lation module 𝑓 to induce an implicit template T = 𝑓 (·, 𝒕), which
should be close to 0 when the query point is inside the template and
close to 1 otherwise. And the shape code 𝒔 is fed into a deformation
module 𝑔 to predict a deformation flow 𝑔(·, 𝒔), which computes the
deformed position of a query point. Finally, the reconstructionM
can be implicitly obtained by applying the deformation flow 𝑔 to
the template T , i.e.M = 𝑔(T , 𝒔).

One of the important designs of Neural-Template is that the topol-
ogy formulation module 𝑓 is implemented with BSP-Net [Chen et al.
2020], so the implicit neural template T can be easily transformed
into a collection of convex polyhedra, resulting in an explicit rep-
resentation with vertices and faces, i.e., T 𝐸 = (𝑉 T , 𝐹 T ). The other
important design is that the deformation module 𝑔 is implemented
with the neural ordinary differential equation (NODE) [Gupta and
Chandraker 2020; Jiang et al. 2020; Yang et al. 2019]. In this way, the
deformation flow 𝑔(·, 𝒔) is a diffeomorphism between the template
space and the reconstructed shape space, leading to the effective
embedding of topology information in the topology code 𝒕 . In our
work, we utilize topology codes to identify appropriate reference
shapes, and leverage the deformation flows to edit an input shape
such that it looks more like each reference shape.

3.3 References Acquisition
We enhance the aesthetics of a given 3D model by referencing the
pre-built shape aesthetics sub-dataset. To achieve this goal, we first
need to identity suitable shapes from the sub-dataset that can be
easily imitated by the input mesh. If the reference and input shapes
have large topological differences, the globally deformed shape may
look poor. Hence, our method finds a reference shape for each input.
It entails that the input mesh and a reference shape should possess
comparable topologies, thereby enabling natural and continuous
deformations from the input shape to the target shape without
compromising the overall structure of the input.
According to this analysis, we utilize the topology code 𝒕 in

Neural-Template [Hui et al. 2022] as the reference-searching feature.
Given an input modelM𝐼 represented as vertices 𝑉𝐼 and faces 𝐹𝐼 ,
we first voxelize it and feed it into the pre-trained Neural-Template’s
encoder to obtain its topology code 𝒕𝐼 and shape code 𝒔𝐼 . The 3D

models in our aesthetic sub-dataset were also preprocessed this way.
Then the 𝐾 aesthetic shapes whose topology codes are the top-𝐾
nearest to 𝒕𝐼 in 𝑙2 distance are found as the reference shapes.

3.4 Reference-guided Global Deformation
After finding the suitable reference shapes, we perform reference-
guided deformation for each pair of input and reference shapes.
AssumingM𝑅 is one of the reference shapes, with the precomputed
topology code 𝒕𝑅 and shape code 𝒔𝑅 , we introduce a deformation
framework to make M𝐼 look more like M𝑅 while preserving M𝐼 ’s
detailed attributes.

The high-level idea is to apply the reference’s deformation flow to
the input’s template. Figure 4 shows Neural-Template’s application
of shape mixing. As mentioned in Section 3.2, the input’s topology
code 𝒕 can be decoded into an explicit template T 𝐸

𝐼
= (𝑉 T

𝐼
, 𝐹 T

𝐼
),

which is further deformed by its deformation flow 𝑔(·, 𝒔𝐼 ) to pro-
duce the reconstruction M𝑟𝑒𝑐 . As shown in Figure 4, deforming
T 𝐸
𝐼

with the reference’s deformation flow 𝑔(·, 𝒔𝑅) can generate a
shape-remixed object M𝑚𝑖𝑥 = (𝑔(𝑉 T

𝐼
, 𝒔𝑅), 𝐹 T𝐼 ) which imitates the

reference’s global shape. However, this simplistic utilization does
not satisfy our beautification standards. First, the reconstructed ex-
plicit template T 𝐸

𝐼
comprises no more than 32 convexes, which leads

to reconstruction errors or omissions of details in the final shape.
For example, the back areas of the chairsM𝑟𝑒𝑐 andM𝑚𝑖𝑥 have inac-
curate geometry (Figure 4). Second, even though the topology codes
𝒕𝐼 and 𝒕𝑅 are close, the deformation flow of the reference shape
may not be compatible with the input’s template. Consequently, the
desired outcome cannot be achieved (e.g., the legs of the chairM𝑚𝑖𝑥

are still quite thick in Figure 4), potentially resulting in distortions
(e.g., the leg corners distort and the bottom parts of the legs do not
touch the ground stably).
Given the above issues with applying a naive version of Neural-

Template, we propose a novel framework to achieve our reference-
guided global deformation, as illustrated in Figure 5. Overall, we re-
disentangle the input and reference shapes into one joint template,
and subsequently incorporate the reference’s deformation flow into
the template, while taking into account the geometric constraints.
Figure 8 shows some results of our reference-guided beautification,
in particular for the global deformation. The inputs are smoothly
deformed to obtain a better global proportion. We describe the
reference-guided deformation framework in detail in the following
sections.

3.4.1 Template Consistency. As the reference’s deformation flow
is associated with the reference’s template, naively incorporating
the reference’s flow to the input’s template can potentially generate
unsatisfactory results, particularly if the templates are not well-
aligned. Therefore, we introduce a technique to re-disentangle the
two shapes to make the input and the reference share the same joint
template. More specifically, the inputM𝐼 and the referenceM𝑅 are
disentangled into a sharing topology code 𝒕 , with their own shape
codes 𝒔𝐼 and 𝒔𝑅 . In this way, the input and the reference share a
joint neural template T = 𝑓 (·, 𝒕) (an occupancy field), and then
deformation flows 𝑔𝐼 = 𝑔(·, 𝒔𝐼 ) and 𝑔𝑅 = 𝑔(·, 𝒔𝑅) map the sharing
template into the occupancy fields ofM𝐼 andM𝑅 respectively.
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Fig. 5. Our Reference-Guided Deformation Framework. We disentangle the input M𝐼 and the reference shapes M𝑅 into a sharing topology code 𝒕 (which
induces a neural template T) and their own shape codes 𝒔𝐼 and 𝒔𝑅 (that guides their deformation flows respectively). During deformation, M𝐼 is first
inversely deformed with 𝑔−1

𝐼
= 𝑔−1 ( ·, 𝒔𝐼 ) to obtain an explicit template T̃𝐼 . Then T̃𝐼 is deformed with 𝑔𝑅 = 𝑔 ( ·, 𝒔𝑅 ) to obtain the output M𝐷 . To supervise

the disentanglement and the deformation, reconstruction loss L𝑟𝑒𝑐𝑜𝑛𝑠 is used to penalize the difference between the joint template and the ground-truth
templates. In addition, we apply a curve-based geometric loss L𝑔𝑒𝑜 to penalize geometric changes between M𝐼 and M𝐷 .

To supervise the disentanglement, we penalize the reconstruc-
tion loss between the original shapes and the new reconstructions.
Specifically, we follow the sampling method from IM-Net [Chen
and Zhang 2019] to sample 𝑁 = 16384 points in the shape space
and obtain a group of occupancy ground-truth {(𝑝𝑖

𝐼
, 𝑜𝑖

𝐼
)}𝑁

𝑖=1 and
{(𝑝 𝑗

𝑅
, 𝑜

𝑗

𝑅
)}𝑁

𝑗=1 for the input and the reference, which represents if a
point 𝑝 is inside the 3D mesh (with 𝑜 = 1) or not (with 𝑜 = 0). As
𝑔 is an diffeomorphism between the template space and the orig-
inal shape space, to predict if a point 𝑝 is inside the 3D mesh is
to predict if the inversely mapped point 𝑔−1 (𝑝) is inside the tem-
plate. Therefore, the occupancy prediction of 𝑝 for the input is
𝑂 (𝑝,M𝐼 ) := 𝑓 (𝑔−1 (𝑝, 𝒔𝐼 ), 𝒕), and 𝑂 (𝑝,M𝑅) := 𝑓 (𝑔−1 (𝑝, 𝒔𝑅), 𝒕) for
the reference. Then the reconstruction loss is defined as:

L𝑟𝑒𝑐𝑜𝑛𝑠 = L𝑜𝑐𝑐_𝑖𝑛𝑝𝑢𝑡 + L𝑜𝑐𝑐_𝑟𝑒 𝑓

=
1
𝑁
(
𝑁∑︁
𝑖=1

[𝑜𝑖𝐼 ∗𝑂 (𝑝𝑖𝐼 ,M𝐼 ) + (1 − 𝑜𝑖𝐼 ) ∗ (1 −𝑂 (𝑝𝑖𝐼 ,M𝐼 ))]+

𝑁∑︁
𝑗=1

[𝑜 𝑗
𝑅
∗𝑂 (𝑝 𝑗

𝑅
,M𝑅) + (1 − 𝑜 𝑗

𝑅
) ∗ (1 −𝑂 (𝑝 𝑗

𝑅
,M𝑅))])

(1)

3.4.2 Global Deformations. To incorporate the reference’s defor-
mation flow with the input’s template, we need to obtain the input’s
template first. As the shared joint template is for both the input and
reference, it ignores the detailed and inherent attributes of the input
shape. Therefore, instead of decoding the explicit template from 𝒕
as Neural-Template [Hui et al. 2022] did, we inversely deform the
inputM𝐼 = (𝑉𝐼 , 𝐹𝐼 ) into the template space via 𝑔−1 (·, 𝒔𝐼 ) to obtain
the input’s new template, i.e:

T̃𝐼 = (𝑔−1 (𝑉𝐼 , 𝒔𝐼 ), 𝐹𝐼 ) (2)

Then, we apply the reference’s deformation flow 𝑔(·, 𝒔𝑅) to T̃𝐼 to
obtain the globally deformed shape:

M𝐷 = 𝑔(T̃𝐼 , 𝒔𝑅) = (𝑔(𝑔−1 (𝑉𝐼 , 𝒔𝐼 ), 𝒔𝑅), 𝐹𝐼 ) (3)

As we introduced in Section 3.2, the deformation flow 𝑔 is im-
plemented with the neural ordinary differential equation (NODE)
[Gupta and Chandraker 2020], which has a diffeomorphic nature.
Therefore, M𝐼 is diffeomorphic to T̃𝐼 , and T̃𝐼 is diffeomorphic to
M𝐷 . Consequently, M𝐼 is diffeomorphic to M𝐷 . Hence, M𝐼 is
continuously and smoothly deformed intoM𝐷 . Therefore, the de-
formed shapeM𝐷 will preserve the topology of the input shapeM𝐼

regardless of its structural or detailed complexity. For example, the
complex topology of the input lamp and rifle shapes in Figure 6 are
preserved. Moreover, because the deformation is smooth, the local
geometry of the inputs can be preserved (for example, the details in
the chair legs and car tires in Figure 6).

3.4.3 Geometric Constraints. The deformed shapeM𝐷 shouldmain-
tain some attributes ofM𝐼 while it imitatesM𝑅 . Considering the
fact that normal or Laplacian regulations used in previous works[Liu
et al. 2021; Yifan et al. 2020] can be naturally changed during our
beautification procedure, we also use curve-based geometric con-
straints that are inspired by IWIRES [Gal et al. 2009]. We extract
locally planar feature loops following the method in IWIRES [Gal et
al. 2009]. We first extract sharp edges, chain the edges into a group of
loops (i.e., the colorful wireframes in Figure 5), and then define the
following geometric constraints for each loop 𝑙 = (𝑣0, 𝑣1, · · · , 𝑣𝑛)
from a local level and a global level.

First, we expect that the locally planar loop 𝑙 should still be locally
planar after deformation. Therefore, we penalize the changes of
triple product values of continuous edges:

L𝑡𝑟𝑖 =
1
𝑛

𝑛−1∑︁
𝑖=0

|𝑒𝑖 · (𝑒𝑖+1 × 𝑒𝑖+2) − 𝑒𝑖 · (𝑒𝑖+1 × 𝑒𝑖+2) | (4)
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Fig. 6. Examples of results with more complex 3D shapes. These examples
show that our reference-guided global deformation can preserve the global
topology and the local details. The reference shapes are in orange, the input
shapes are in blue, and the deformed shapes are in yellow. Details are shown
in the rectangular boxes.

where 𝑒𝑖 is the normalized edge −−−−→𝑣𝑖𝑣𝑖+1 and 𝑒𝑖 is the corresponding
edge after deformation. The subscripts are cyclical to 𝑛.

Furthermore, we expect that the general contours of the loops will
remain relatively unchanged. For example, we hope that circular
shapes will be deformed into circular shapes, while rectangular
shapes will be deformed into rectangular shapes. So we also penalize
the changes of angles:

L𝑎𝑛𝑔 =
1
𝑛

𝑛−1∑︁
𝑖=0

|𝑒𝑖 · 𝑒𝑖+1 − 𝑒𝑖 · 𝑒𝑖+1 | (5)

While the formulas L𝑡𝑟𝑖 and L𝑎𝑛𝑔 are defined from a local level,
we also define similar losses from a more global level to avoid the
accumulation of local errors:

L′
𝑡𝑟𝑖 =

1
𝑛

𝑛−1∑︁
𝑖=0

|𝑒′𝑖 · (𝑒
′
𝑖+𝑘 × 𝑒′

𝑖+2𝑘 ) − 𝑒
′
𝑖
· (𝑒′

𝑖+𝑘 × �𝑒′
𝑖+2𝑘 ) | (6)

L′
𝑎𝑛𝑔 =

1
𝑛

𝑛−1∑︁
𝑖=0

|𝑒′𝑖 · 𝑒
′
𝑖+𝑘 − 𝑒′

𝑖
· 𝑒′

𝑖+𝑘 | (7)

where 𝑒′
𝑖
is the normalized edge −−−−→𝑣𝑖𝑣𝑖+𝑘 and 𝑘 = ⌊𝑛/6⌋. And finally,

the geometry loss is:

𝐿𝑔𝑒𝑜 = L𝑡𝑟𝑖 + L′
𝑡𝑟𝑖 + L𝑎𝑛𝑔 + L′

𝑎𝑛𝑔 (8)

3.4.4 Implementation and Training. In our implementation, we use
the same network architecture as Neural-Template [Hui et al. 2022]
to implement the template module 𝑓 and deformation module 𝑔.

𝛼 = 1𝛼 = 0.33 𝛼 = 0.66

Input Ref

Input Ref

Fig. 7. Examples of Shape Morphing: For each pair of input and reference
shapes, the first row shows the morphing with the globally deformed shape,
and the second row shows the morphing with further local substitutions.

We solve for the desired network’s parameters and latent codes via
minimizing the following loss function:

argmin
𝜃,𝒕,𝒔𝐼 ,𝒔𝑅

L = L𝑟𝑒𝑐𝑜𝑛𝑠 + 𝜆L𝑔𝑒𝑜 (9)

where 𝜃 represents the neural parameters of 𝑔 and 𝑓 , which is
initialized from the pretrained Neural-Template [Hui et al. 2022]
model. Besides, we initialize 𝒕 = (𝒕𝐼 + 𝒕𝑅)/2, 𝒔𝐼 = 𝒔𝐼 , and 𝒔𝑅 = 𝒔𝑅 .
The learning rate for 𝜃 is 0.0005 and the learning rate for 𝒕, 𝒔𝐼 , 𝒔𝑅 is
0.0025. We set 𝜆 = 0.7 for cars and 𝜆 = 0.2 for the other categories.
We run 300 epochs with the Adam optimizer to obtain the deformed
shape, and it takes about 8 minutes on a Tesla V100 GPU. Then the
globally deformed shapeM𝐷 is obtained according to Equation 3.

3.5 Reference-guided Local Substitution
The aesthetics of shapes can be analyzed from both a broad, global
perspective and a more specific, local perspective. In the last section,
we perform global deformations to the input such that it looks more
like the reference shape in terms of its global structural proportions.
As the deformation flow cannot convey delicate local geometry,
we may optionally perform local substitutions to transplant some
aesthetic patches from the reference shape to the input. Here the
aesthetic patches were pre-labelled with the establishment of the
shape aesthetics dataset. Additionally, these areas can be automati-
cally identified using techniques such as aesthetic maps [Chen and
Lau 2022] or be specified by users.
Assuming Ω is one of the aesthetic local region of the refer-

ence shape M𝑅 , we transplant Ω intoM𝐷 automatically via Snap-
Paste[Sharf et al. 2006]. More specifically, SnapPaste is an interactive
tool for mesh composition. If two mesh parts are placed approxi-
mately close and they have overlapping snapping regions, SnapPaste
can snap the two parts via its soft iterative closest point (Soft-ICP)
algorithm. To achieve our local patch transplantation, we need to
identify the snapping regions on both the input and reference shapes.
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Fig. 8. Results of our aesthetics enhancement. These examples demonstrate the global deformations in particular. The input shapes are in blue, the reference
shapes are in orange, and the globally deformed shapes are in yellow.

The snapping region of the reference can be pre-labelled, and then
its boundary loops can be detected with orientation. Here the ori-
entation is defined so that the snapping region always lies on the
right of the boundary’s orientation. As we obtain a good alignment
betweenM𝐷 andM𝑅 , if the snapping region Ω𝑠 of Ω is predefined
with oriented boundary loops, the corresponding snapping region
and the corresponding replaced region on M𝐷 can be obtained via
projecting the oriented boundary loops of Ω𝑠 onto M𝐷 ’s surface.
After snapping regions are decided, Soft-ICP [Sharf et al. 2006] is
performed to overlap the snapping regions, and finally the local
substitution is achieved.

3.6 Results Morphing
Following the global deformation and local substitution operations,
the edited shape will adhere to the reference’s overall structural
proportions, while also capturing some of its local details. These
results are referred to as “full-imitation”. As editing becomes more
extensive, the input will increasingly resemble the reference, but
may lose some of its inherent structural attributes. Tomeet the user’s
potential desire to preserve more of the input’s original attributes,
we also allow for some “semi-imitation” outputs.

As defined in Formula 3, we obtained the globally deformed shape
M𝐷 via deforming input’s template T̃𝐼 with reference’s deforma-
tion flow 𝑔(·, 𝒔𝑅). To preserve input’s global attribute, we use a
blended deformation flow 𝑔(·, 𝒔′), where 𝒔′ is an interpolation of
the input’s shape code 𝒔𝐼 and the reference’s shape code 𝒔𝑅 , i.e.,
𝒔′ = 𝛼 · 𝒔𝑅 + (1 − 𝛼) · 𝒔𝐼 . More specifically, if no local substitution
is applied toM𝐷 , we can directly apply 𝑔(·, 𝒔′) to T̃𝐼 to obtain the
morphing shape. Moreover, if M𝐷 is further edited into M𝐹 via
local substitution, we first inversely deform M𝐹 via the inverse
flow 𝑔−1 (·, 𝒔𝑅) to obtain it’s template, and then apply 𝑔(·, 𝒔′), i.e.,
the morphing shape is 𝑔(𝑔−1 (M𝐹 , 𝒔𝑅), 𝒔′). Figure 7 shows some

examples of “semi-imitation” morphing. As 𝛼 gets closer to 0, more
of the input’s global attributes are preserved.

4 RESULTS AND EVALUATIONS

4.1 Quality of Beautification
To evaluate the performance of our reference-based 3D beautifica-
tion framework, a total of 90 chairs, 50 lamps, 50 cars, 60 airplanes
and 80 tables were randomly selected from the“ugly models” as our
testing dataset. The“ugly models” refer to the shapes which have
previously received at least two low ratings, which means at least
two users disagreed or strongly disagreed with the aesthetic quality
of the shapes in our data collection process described in Section 3.1.
For each shape, we generated five globally deformed results with the
guidance of its top-five reference shapes. Then local substitutions
were performed if the found reference was pre-labelled with some
aesthetic regions. Table 1 shows the number of shapes we had. For
example, we have 450 globally-deformed outputs and 132 further
locally-blended outputs for the category of chairs.

Table 1. Number of inputs to be beautified and the generated outputs
through our global and local editing techniques.

Chair Lamp Car Airplane Table
input 90 50 50 60 80
global 450 250 250 300 400
global & local 132 158 68 89 107

4.1.1 Qualitative Evaluation. Figures 8 and 9 show some of our
shape beautification results. As shown in Figure 8, some inputs are
not aesthetically pleasing due to their dullness or inappropriate
global proportions. Therefore, by making them look more like the
reference at a global scale, we are able to enhance their visual ap-
peal. In Figure 9, we further conduct local substitutions for some
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Fig. 9. Results of our reference-based beautification algorithm. Given the input shapes (shown in blue), several aesthetic references (shown in orange) are
found. Then global deformations and optional local substitutions are performed to edit the input shapes according to their respective reference shapes. The
output shapes are are shown in yellow.
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shapes after global deformations, which make the edited shapes
more delicate. Overall, the reference-based edited results exhibit a
higher level of visual appeal compared to the original inputs.

In addition, we compare the beautification quality of our method
with the leading text-guided geometric editing works with the
prompt “a beautiful X”. As depicted in Figure 10, Text2Mesh [Michel
et al. 2022] and X-Mesh [Ma et al. 2023] only perform near-surface
displacement, which limits their ability to achieve significant global
deformations and improve the dull or inappropriate global pro-
portions. Although TextDeformer [Gao et al. 2023] can conduct
large-scale deformations, the deformation is not controllable with
only “beautiful” as supervision. While our reference-based beautifi-
cation strategy can allow for both large global editing (such as the
chair and lamp in Figure 10) or slight global editing (such as the
airplane in Figure 10), TextDeformer [Gao et al. 2023]’s deformation
results are not visually pleasing. It is worth noting that current
text-guided geometric editing works struggle with abstract tasks,
such as beautification, due to limitations in vision-language models
like CLIP [Radford et al. 2021] that cannot parse abstract concepts.

“a beautiful 
X”

TextDeformer

Text2Mesh

X-Mesh

X-Mesh

Ours

Fig. 10. Comparison of beautification quality to the text-guided geometric
editing techniques: Text2Mesh [Michel et al. 2022], X-Mesh [Ma et al. 2023]
and TextDeformer [Gao et al. 2023]

4.1.2 Quantitative Evaluation. We quantitatively evaluate the qual-
ity of our beautification work via a previous learning-based aesthetic
metric [Chen and Lau 2022] and an additional user study.
Chen and Lau [2022]’s aesthetic metric was trained on four cat-

egories (chairs, lamps, cups, and tables) with a limited number of
shapes and structures. Therefore, we only used their metric to eval-
uate the aesthetics scores for our chairs, lamps and tables. After
applying global deformations (Table 2), 71.8% of the deformed chairs,
78.4% of the deformed lamps and 72.5% of the deformed tables have
higher aesthetic scores than their input shapes. After further local
substitutions, 87.9% of the edited chairs, 90.5% of the edited lamps

and 89.7% of the edited tables have higher aesthetic scores than their
deformed shapes.

Table 2. Percentage of 3D shapes whose aesthetics scores [Chen and Lau
2022] increase after editing.

Chair Lamp table
global 71.8% 78.4 72.5%
global & local 87.9% 90.5 89.7%

In addition, we conducted a user study to evaluate if our algorithm
effectively improves the appearance of the input shapes. Specifically,
we randomly selected 12 shapes from each category, resulting in a
total of 48 shapes. For each input shape, we randomly chose three
results based on three different references, leading to three (input,
output) pairs. We then invited 24 users to select which shape they
found more beautiful from each pair, with each user rating only
one pair from each shape. Thus, each participant rated 48 pairs
of different shapes. In total, we obtained 144 pairs, and each pair
was rated by 8 participants. Our statistical analysis, as presented
in Figure 11, indicates that, across all categories, the majority of
shape pairs achieved an apparent enhancement, with at least 6 out
of 8 participants perceiving the output shape as more aesthetically
pleasing.

Chair Lamp Airplane

Car Table

Fig. 11. Shape pairs’ ratings distributions. The legend represents “for each
pair, how many participants out of eight think the edited shape is more
beautiful”, from 8 (dark blue) to 3 (dark red). The pie charts count the rating
distribution of pairs. For example, for the Chair category, there are 23 pairs
for which all of the eight users think that the output shape is more beautiful.

4.2 Quality of Target-driven Global Deformation
To evaluate the quality of the beautification, we also conduct evalu-
ation of our target-driven global deformation framework. We com-
pare our results to Neural-Cage [Yifan et al. 2020] which proposed
cage-based global deformation and DeepMetaHandles [Liu et al.
2021] which achieved global deformation via the combinational de-
formations of surface key points. We also compare with the shape-
mixing results of Neural-Template [Hui et al. 2022]. As Neural-Cage
[Yifan et al. 2020] and DeepMetaHandles [Liu et al. 2021] focused
on “chair”, “table” and “car”, we perform comparisons on these three
categories.
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src

tar

ours

DM

NC

NT

Fig. 12. Qualitative comparison of our method with other methods: (DM) DeepMetaHandles [Liu et al. 2021], (NC) Neural-Cages [Yifan et al. 2020] and (NT)
Neural-Template [Hui et al. 2022]. Our approach yields superior results: DeepMetaHandles’s and Neural-Cage’s deformed shapes still remain much different
from the target shapes at a overall level. Besides, Neural-Template’s convex-compositional results display much roughness and it cannot convey delicate
details such as the bottom areas of the shapes in column 5, the leg areas of the shapes in column 7, and the side-curves of the shapes in columns 8 and 9.

In our evaluation, we primarily care about the source-target pairs
that have comparable topological structures. In addition to the 450
chair pairs, 250 car pairs, and 400 table pairs we used in Section
4.1, we further randomly sampled 200 chair pairs, 250 car pairs, and
250 table pairs. Those pairs have shapes whose topology distances
(i.e. the 𝑙2 distance of the pre-computed topology latent codes) are
within the nearest 50 shapes to each other.

Figure 12 shows the qualitative results. Our method achieves
better visual outcomes compared to prior deformation works [Liu
et al. 2021; Yifan et al. 2020] according to the following aspects.
First, Neural-Cages [Yifan et al. 2020] and DeepMetaHandles [Liu
et al. 2021] are restricted by the degrees of freedom for deformation.
Their results look more close to the “axis-aligned” scaling, and
the deformed shapes still remain much different from the target
shapes at a global level. Second, their outputs exhibit a lower level
of “man-made” quality compared to ours. Specifically, the seating
area and tabletop area are no longer flat, the wheels of the car are
no longer circular, and the areas that are supposed to touch the
ground no longer touch the ground. As for Neural-Template [Hui
et al. 2022], although its outputs match the targets on a global scale,
the convex-compositional shapes exhibit greater roughness when
compared to the original shapes. It also cannot deal with delicate
shape transferring. For example, the bottom areas of the table in
Figure 12 column 5 and the leg areas of the table in Figure 12 column

7 are not transferred well. In addition, the side curves of the cars in
Figure 12 columns 8-9 are not effectively conveyed.
Inspired by Neural-Cages [Yifan et al. 2020] and DeepMetaHan-

dles [Liu et al. 2021], for quantitative evaluation, we utilized Cham-
fer distance (CD, computed over 100,000 uniformly sampled points)
between the deformed shape and the target shape to measure the
alignment error, and we used the differences in cotangent Laplacians
(CotL) to measure distortion. Please note that “CotL” and “CD” can-
not directly stand for the quality of beautification. “CD” measures
the difference of the deformed shape compared to the reference,
and smaller “CD” values correspond to smaller differences. “CotL”
measures the distortion of the deformed shape compared to the
original input, and smaller “CotL” values correspond to smaller
distortions. Table 3 shows the quantitative results. Compared to
other methods [Hui et al. 2022; Liu et al. 2021; Yifan et al. 2020], our
approach achieves the lowest alignment errors. Besides, our “CotL”
error is higher than Neural-Cages [Yifan et al. 2020] and DeepMeta-
Handles [Liu et al. 2021]. However, we illustrate that it is normal
because our results achieve better alignment and larger distortions
are needed to deform the input into the reference. Moreover, the
higher “CotL” errors do not mean that our approach produces un-
natural or incoherent deformations. “CotL” error only measures the
distortion of the deformed shape compared to the original input,
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and it cannot measure if the deformed shape has visually unpleas-
ing distortions. As Figure 12 shows, our inputs are deformed in
a natural and smooth manner to look more like and approximate
the target shapes, leading to a greater difference from the original
source shapes and consequently yielding a higher “CotL” error.

Table 3. Chamfer distance (CD) and cotangent Laplacians error (CotL)
comparison between different methods: (DM) DeepMetaHandles [Liu et al.
2021], (NC) Neural-Cages [Yifan et al. 2020] and (NT) Neural-Template [Hui
et al. 2022]. The units of CD and CotL are both 10−3.

Chair Table Car
CD CotL CD CotL CD CotL

DM 3.407 0.344 16.851 0.331 1.115 0.208
NC 4.290 0.127 10.964 0.279 1.412 0.474
NT 1.292 – 1.321 – 0.630 –
Ours 0.867 0.697 0.723 0.632 0.624 4.677

4.3 Ablation Study
To perform reference-guided global deformation, our key idea is to
disentangle the input shape and the reference shape into a joint neu-
ral template and their own deformation flows, with the supervision
of the reconstruction loss and geometric constraints. In this section,
we analyze the effects of our framework designs with the ablation
studies. First, we compare the deformation results with the basic
Neural-Template flows. That is, we map the vertices of the input
shape to the template domain using its inverse flow 𝑔−1

𝐼
and apply

the reference’s deformation flow 𝑔𝑅 . Here the flows are deduced
from the original Neural-Template networks without any optimiza-
tion. As Figure 13a shows, the deformed results cannot transfer the
references’ global shapes precisely, and unpleasing distortions occur.
In other words, it has the shortcomings of both “only without using
joint neural template” (Figure 13b) and “only without geometric
constraints” (Figure 13c). Next, we describe these ablation studies
in more detail.

4.3.1 Joint Neural Template. In order to explore the role of utilizing
a joint neutral template between the input and the reference, we
conducted experiments (denoted as “w/o ST”) in which we disen-
tangled the input and the reference into two independent templates
(referred to as two independent topology codes). The network was
then trained with reconstruction loss and geometric loss as we
described in Section 3.4.4.
Qualitatively, as Figure 13b shows, the deformation cannot pre-

cisely deform the input’s global shape towards the reference. For
example, the areas of the car trunk, back legs, table bottom, and
lampshade are not well deformed into the references’ shapes. This
is because the reference’s deformation flow cannot be applied effec-
tively with the input’s template if the input’s template is not close
to the reference’s template. Also, we computed “CD” and “CotL”
errors as we did in Section 4.2. Table 4 shows the statistical results.
All of the “CD” errors increase when using independent templates,
which quantitatively demonstrates that the ability of the target-
driven shape transferring will decline without using a joint neural
template.

(d)

src

ref

(b)

(a)

(c)

(e)

Fig. 13. Comparison of reference-guided global deformation results in dif-
ferent cases: (a) basic Neural-Template’s flows; (b) without shared template;
(c) without geometric constraint; (d) without inverse deformation; (e) full
version. Overall, the full version achieves the best qualitative performance.

Table 4. Chamfer distance (CD) and cotangent Laplacians error (CotL)
comparison between different ablation studies. The units of CD and CotL
are both 10−3.

w/o ST w/o L𝑔𝑒𝑜 Full
CD CotL CD CotL CD CotL

Chair 1.319 0.618 0.862 0.721 0.867 0.697
Table 1.411 0.504 0.712 0.682 0.723 0.632
Car 0.716 3.310 0.629 5.14 0.624 4.677
Lamp 1.193 0.581 1.125 0.632 1.113 0.607

Airplane 0.702 1.278 0.588 2.018 0.590 1.851

4.3.2 Geometric Constraints. In order to explore the role of the geo-
metric constraints, we conducted experiments to train the network
without the supervision of geometric loss (denoted as “w/o L𝑔𝑒𝑜 ”),
i.e. we set 𝜆 = 0 in Formula 9.
Qualitatively, as Figure 13c shows, there are distortions in the

wheels of the cars or the bottom areas of the chairs and tables.
Without the geometric constraints, the circular shapes are likely
to lose their circularity and the flat planes are likely to lose their
flatness. Quantitatively, as Table 4 shows, all of the “CotL” errors
increase without the supervision of the geometric loss. While the
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Chamfer distances do not change much without L𝑔𝑒𝑜 , larger “CotL”
errors indicate a higher probability of the undesirable distortions.

4.3.3 Inverse Deformation. In our global deformation framework,
after learning the shared topology code 𝒕 and the deformation flows,
we obtain the input’s template via inversely deforming the input
mesh with its learned deformation flow, instead of reconstructing
a shared explicit template from 𝒕 . This strategy helps to keep the
detailed geometries of the input shape, because the shared template
may ignore details to accommodate both the input and the reference.
As Figure 13d shows, without using inverse deformations, detailed
geometries such as the car wheels or the patterns on the car’s body
will appear uneven or be incorrect.

4.4 Generality of our Framework
Although we built the aesthetics dataset and conducted evaluations
on five shape categories, our reference-based 3D shape aesthetics
enhancement framework can be adapted to more categories. More
specifically, given an input shape, if a structurally-similar aesthetic
reference shape is provided, we can perform beautification with our
algorithm. Figure 14 shows some examples.

Fig. 14. Generality of our Framework: Examples of reference-based beau-
tification for a cabinet, rifle, display and ship. The inputs are in blue, the
references are in orange and the outputs are in yellow.

5 DISCUSSION, LIMITATIONS, AND FUTURE WORK
While our reference-based 3D shape aesthetics enhancement frame-
work enables the automatic beautification of general 3D shapes via
making an input shape look more like or imitate some beautiful
reference shapes, it has the following limitations.
First, we acknowledge that our framework’s ability to enhance

the aesthetics of 3D models is constrained by the inherent limita-
tions of the aesthetics sub-dataset, which is a common challenge
encountered by data-driven or reference-based techniques. If an in-
put shape is ugly and has unusual global structure (such as in Figure
15a) and no suitable references can be found in our aesthetic dataset,
the reference-guided global beautification will fail. Furthermore,
the detail-preserving global deformation will also preserve some
irregular parts (such as the highlighted cone-shaped part in Figure
15b). In addition, the beautification may not work well on some
sub-categories of shapes. For example, there is no truck in the set of
aesthetic cars. As Figure 15c shows, the beautification will fail if we
attempt to make the truck follow the SUV’s shape (and the result
in the case is a mixture of the truck and SUV). Therefore, larger

(a) (b)

(c)

Fig. 15. Failure cases of our beautification framework. The inputs are in
blue, the references are in orange and the outputs are in yellow.

aesthetic-related datasets and semantic-aware aesthetic supervision
are needed. In the future, we will collect additional aesthetics-
related ratings for a broader range of 3D models to augment our
shape aesthetics sub-dataset. Additionally, we aim to develop more
comprehensive 3D shape aesthetics metrics through the expanded
dataset, and then metric-guided end-to-end beautification can be
explored.

Second, our method needs 8 minutes to beautify each input shape.
However, our method is intended for offline beautification of an
input 3D shape, and it works well for this purpose. Eight minutes is
acceptable compared to the time a user would spend manually to
edit an ugly model to make it more beautiful.
Third, our framework will not be as effective if the reference

shapes that are found are not more aesthetically pleasing than the
input shapes. Consequently, it is unable to handle inputs that are
already visually appealing. By allowing the input to imitate multiple
references simultaneously, rather than just one at a time, this issue
may be resolved. However, this presents a challenging problem as it
necessitates a more comprehensive analysis of 3D aesthetics and 3D
blending. Additionally, beyond imitating existing shapes, learning
aesthetics-conditional generative neural networks for 3D shapes is
also a challenging but potential problem. Future work may study
these unexplored issues.
Finally, the current work is exclusively devoted to beautifying a

3D model by means of modifications to its geometric shape, with
no regard for its textural information. In practical applications, tex-
ture is an inseparable part of a complete model. Current leading
works [Hong et al. 2022; Ma et al. 2023; Wang et al. 2022a] generate
textured 3D shapes with the rapid development of differentiable
rendering techniques or representations [Bangaru et al. 2022; Chen
and Zhang 2019; Mildenhall et al. 2021; Wang et al. 2021]. Theo-
retically, the manipulation of the texture of an existing model will
affect its aesthetics qualities. Therefore, in future works of aesthetics
enhancement, we expect that both texture and geometry will be
simultaneously considered and modified.
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beautification with shipshape. Computers & Graphics 56 (2016), 46–58.

Ran Gal, Olga Sorkine, Niloy J Mitra, and Daniel Cohen-Or. 2009. iWIRES: An analyze-
and-edit approach to shape manipulation. In ACM SIGGRAPH 2009 papers. 1–10.

Lin Gao, Jie Yang, Yi-Ling Qiao, Yu-Kun Lai, Paul L Rosin, Weiwei Xu, and Shihong
Xia. 2018. Automatic unpaired shape deformation transfer. ACM Transactions on
Graphics (TOG) 37, 6 (2018), 1–15.

William Gao, Noam Aigerman, Groueix Thibault, Vladimir Kim, and Rana Hanocka.
2023. TextDeformer: Geometry Manipulation using Text Guidance. In ACM Trans-
actions on Graphics (SIGGRAPH).

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu
Aubry. 2019. Unsupervised cycle-consistent deformation for shape matching. In
Computer Graphics Forum, Vol. 38. Wiley Online Library, 123–133.

Guanjun Guo, Hanzi Wang, Chunhua Shen, Yan Yan, and Hong-Yuan Mark Liao. 2018.
Automatic image cropping for visual aesthetic enhancement using deep neural
networks and cascaded regression. IEEE Transactions on Multimedia 20, 8 (2018),
2073–2085.

Kunal Gupta and Manmohan Chandraker. 2020. Neural Mesh Flow: 3D Manifold Mesh
Generation via Diffeomorphic Flows. Advances in Neural Information Processing
Systems 33 (2020), 1747–1758.

Rana Hanocka, Noa Fish, Zhenhua Wang, Raja Giryes, Shachar Fleishman, and Daniel
Cohen-Or. 2018. Alignet: Partial-shape agnostic alignment via unsupervised learning.
ACM Transactions on Graphics (TOG) 38, 1 (2018), 1–14.

Fangzhou Hong, Mingyuan Zhang, Liang Pan, Zhongang Cai, Lei Yang, and Ziwei Liu.
2022. AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars.
ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–19.

Ruizhen Hu, Wenchao Li, Oliver Van Kaick, Hui Huang, Melinos Averkiou, Daniel
Cohen-Or, and Hao Zhang. 2017. Co-locating style-defining elements on 3d shapes.
ACM Transactions on Graphics (TOG) 36, 3 (2017), 1–15.

Ka-Hei Hui, Ruihui Li, Jingyu Hu, and Chi-Wing Fu. 2022. Neural template: Topology-
aware reconstruction and disentangled generation of 3d meshes. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 18572–18582.

Md Baharul Islam, Wong Lai-Kuan, and Wong Chee-Onn. 2017. A survey of aesthetics-
driven image recomposition.Multimedia Tools and Applications 76 (2017), 9517–9542.

Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and Leonidas J Guibas. 2020. Shape-
flow: Learnable deformation flows among 3d shapes. Advances in Neural Information
Processing Systems 33 (2020), 9745–9757.

Shu Kong, Xiaohui Shen, Zhe Lin, Radomir Mech, and Charless Fowlkes. 2016. Photo
aesthetics ranking network with attributes and content adaptation. In Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October
11–14, 2016, Proceedings, Part I 14. Springer, 662–679.

Manfred Lau, Kapil Dev, Weiqi Shi, Julie Dorsey, and Holly Rushmeier. 2016. Tactile
mesh saliency. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–11.

Tommer Leyvand, Daniel Cohen-Or, Gideon Dror, and Dani Lischinski. 2008. Data-
driven enhancement of facial attractiveness. In ACM SIGGRAPH 2008 papers. 1–9.

Congcong Li, Alexander C Loui, and Tsuhan Chen. 2010. Towards aesthetics: A photo
quality assessment and photo selection system. In Proceedings of the 18th ACM
international conference on Multimedia. 827–830.

Jianshu Li, Chao Xiong, Luoqi Liu, Xiangbo Shu, and Shuicheng Yan. 2015. Deep face
beautification. In Proceedings of the 23rd ACM international conference on Multimedia.
793–794.

Qiqi Liao, Xiaogang Jin, and Wenting Zeng. 2012. Enhancing the symmetry and
proportion of 3D face geometry. IEEE transactions on visualization and computer
graphics 18, 10 (2012), 1704–1716.

Dong Liu, Rohit Puri, Nagendra Kamath, and Subhabrata Bhattacharya. 2020.
Composition-aware image aesthetics assessment. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 3569–3578.

Ligang Liu, Renjie Chen, Lior Wolf, and Daniel Cohen-Or. 2010. Optimizing photo
composition. In Computer graphics forum, Vol. 29. Wiley Online Library, 469–478.

Minghua Liu, Minhyuk Sung, Radomir Mech, and Hao Su. 2021. Deepmetahandles:
Learning deformation meta-handles of 3d meshes with biharmonic coordinates. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12–21.

Xin Lu, Zhe Lin, Hailin Jin, Jianchao Yang, and James Z Wang. 2015. Rating image
aesthetics using deep learning. IEEE Transactions on Multimedia 17, 11 (2015),
2021–2034.

Yiwei Ma, Xiaoqing Zhang, Xiaoshuai Sun, Jiayi Ji, Haowei Wang, Guannan Jiang,
Weilin Zhuang, and Rongrong Ji. 2023. X-Mesh: Towards Fast and Accurate Text-
driven 3D Stylization via Dynamic Textual Guidance. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2749–2760.

Mayra D Barrera Machuca, Paul Asente, Wolfgang Stuerzlinger, Jingwan Lu, and Byung-
moon Kim. 2018. Multiplanes: Assisted freehand vr sketching. In Proceedings of the
2018 ACM Symposium on Spatial User Interaction. 36–47.

Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and Rana Hanocka. 2022.
Text2mesh: Text-driven neural stylization for meshes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 13492–13502.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields
for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

Kenjiro T Miura and Gobithaasan RU. 2014. Aesthetic curves and surfaces in computer
aided geometric design. International Journal of Automation Technology 8, 3 (2014),
304–316.

Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and
Hao Su. 2019. Partnet: A large-scale benchmark for fine-grained and hierarchical
part-level 3d object understanding. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 909–918.

Masashi Nishiyama, Takahiro Okabe, Imari Sato, and Yoichi Sato. 2011. Aesthetic
quality classification of photographs based on color harmony. In CVPR 2011. IEEE,
33–40.

Alice J O’Toole, Theodore Price, Thomas Vetter, James C Bartlett, and Volker Blanz.
1999. 3D shape and 2D surface textures of human faces: The role of “averages” in
attractiveness and age. Image and Vision Computing 18, 1 (1999), 9–19.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Love-
grove. 2019. Deepsdf: Learning continuous signed distance functions for shape
representation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 165–174.

Binh Pham. 1999. Design for aesthetics: interactions of design variables and aesthetic
properties. In Human Vision and Electronic Imaging IV, Vol. 3644. SPIE, 364–371.

Binh Pham and Jinglan Zhang. 2003. A fuzzy shape specification system to support
design for aesthetics. Soft Computing in Measurement and Information Acquisition
(2003), 39–50.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021.
Learning transferable visual models from natural language supervision. In Interna-
tional conference on machine learning. PMLR, 8748–8763.

Jian Ren, Xiaohui Shen, Zhe Lin, Radomir Mech, and David J Foran. 2017. Personalized
image aesthetics. In Proceedings of the IEEE international conference on computer
vision. 638–647.

Mattia Segu, Margarita Grinvald, Roland Siegwart, and Federico Tombari. 2020. 3dsnet:
Unsupervised shape-to-shape 3d style transfer. arXiv preprint arXiv:2011.13388

ACM Trans. Graph., Vol. 43, No. 6, Article 279. Publication date: December 2024.



Enhancing the Aesthetics of 3D Shapes via Reference-based Editing • 279:15

(2020).
Andrei Sharf, Marina Blumenkrants, Ariel Shamir, and Daniel Cohen-Or. 2006. Snap-

paste: an interactive technique for easy mesh composition. The Visual Computer 22
(2006), 835–844.

I-Chao Shen. 2021. Data-Driven Sketch Beautification With Neural Feature Representa-
tion. IEEE Computer Graphics and Applications 42, 4 (2021), 72–79.

Chaoyue Song, Jiacheng Wei, Ruibo Li, Fayao Liu, and Guosheng Lin. 2021. 3D pose
transfer with correspondence learning and mesh refinement. Advances in Neural
Information Processing Systems 34 (2021), 3108–3120.

Chaoyue Song, Jiacheng Wei, Ruibo Li, Fayao Liu, and Guosheng Lin. 2023. Unsu-
pervised 3d pose transfer with cross consistency and dual reconstruction. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2023).

Wei-Tse Sun, Ting-Hsuan Chao, Yin-Hsi Kuo, and Winston H Hsu. 2017. Photo fil-
ter recommendation by category-aware aesthetic learning. IEEE Transactions on
Multimedia 19, 8 (2017), 1870–1880.

Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. 2022a. Clip-
nerf: Text-and-image driven manipulation of neural radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 3835–3844.

Haoran Wang, Jiaxin Li, Alexandru Telea, Jiří Kosinka, and Zizhao Wu. 2022b. USTNet:
Unsupervised Shape-to-Shape Translation via Disentangled Representations. In
Computer Graphics Forum, Vol. 41. Wiley Online Library, 141–152.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. Neus: Learning neural implicit surfaces by volume rendering for
multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021).

Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. 2019. 3dn: 3d
deformation network. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 1038–1046.

Zhijie Wu, Xiang Wang, Di Lin, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
2019. Sagnet: Structure-aware generative network for 3d-shape modeling. ACM
Transactions on Graphics (TOG) 38, 4 (2019), 1–14.

Qinjie Xiao, Xiangjun Tang, You Wu, Leyang Jin, Yong-Liang Yang, and Xiaogang Jin.
2020. Deep shapely portraits. In Proceedings of the 28th ACM International Conference
on Multimedia. 1800–1808.

Qinjie Xiao, You Wu, Dinghong Wang, Yong-Liang Yang, and Xiaogang Jin. 2021.
Beauty3DFaceNet: deep geometry and texture fusion for 3D facial attractiveness

prediction. Computers & Graphics 98 (2021), 11–18.
Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yueshan Xiong, and Zhi-Quan

Cheng. 2010. Style-content separation by anisotropic part scales. In ACM SIGGRAPH
Asia 2010 papers. 1–10.

Pengfei Xu, Guohang Yan, Hongbo Fu, Takeo Igarashi, Chiew-Lan Tai, and Hui Huang.
2019. Global Beautification of 2D and 3D Layouts With Interactive Ambiguity
Resolution. IEEE transactions on visualization and computer graphics 27, 4 (2019),
2355–2368.

Zhicheng Yan, Hao Zhang, Baoyuan Wang, Sylvain Paris, and Yizhou Yu. 2016. Auto-
matic photo adjustment using deep neural networks. ACM Transactions on Graphics
(TOG) 35, 2 (2016), 1–15.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath
Hariharan. 2019. Pointflow: 3d point cloud generation with continuous normalizing
flows. In Proceedings of the IEEE/CVF international conference on computer vision.
4541–4550.

Yuzhe Yang, Liwu Xu, Leida Li, Nan Qie, Yaqian Li, Peng Zhang, and Yandong Guo. 2022.
Personalized image aesthetics assessment with rich attributes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 19861–19869.

Wang Yifan, NoamAigerman, Vladimir G Kim, Siddhartha Chaudhuri, and Olga Sorkine-
Hornung. 2020. Neural cages for detail-preserving 3d deformations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 75–83.

Kangxue Yin, Jun Gao, Maria Shugrina, Sameh Khamis, and Sanja Fidler. 2021.
3dstylenet: Creating 3d shapes with geometric and texture style variations. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 12456–
12465.

Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K Hodgins, and Levent Burak
Kara. 2015. Semantic shape editing using deformation handles. ACM Transactions
on Graphics (TOG) 34, 4 (2015), 1–12.

Hancheng Zhu, Yong Zhou, Leida Li, Yaqian Li, and Yandong Guo. 2021. Learning
personalized image aesthetics from subjective and objective attributes. IEEE Trans-
actions on Multimedia (2021).

C Lawrence Zitnick. 2013. Handwriting beautification using token means. ACM
Transactions on Graphics (TOG) 32, 4 (2013), 1–8.

ACM Trans. Graph., Vol. 43, No. 6, Article 279. Publication date: December 2024.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Aesthetics Assessment and Beautification
	2.2 Reference-guided 3D Deformation
	2.3 Semantic-driven Shape Editing

	3 3D Shape Beautification
	3.1 Shape Aesthetics sub-Dataset
	3.2 Preliminary
	3.3 References Acquisition
	3.4 Reference-guided Global Deformation
	3.5 Reference-guided Local Substitution
	3.6 Results Morphing

	4 Results and Evaluations
	4.1 Quality of Beautification
	4.2 Quality of Target-driven Global Deformation
	4.3 Ablation Study
	4.4 Generality of our Framework

	5 Discussion, Limitations, and Future Work
	Acknowledgments
	References

